Implementing a Physically Based Shading without locking yourself in

Over the last few months I have been trying to push my understanding of Physically Based Shading, by actively exploring every corner and turning over every stone, to uncover any area where I lack knowledge. Although this is still an ongoing process and I still have a lot to do, I thought I could already share some of what I have learned in the process.

Last weekend the Easter demoparty event Revision took place, as an online version due to the current pandemic situation. There, I presented a talk on Physically Based Shading, in which I went into electromagnetism, existing models, and an brief overview of a prototype I am working on.

The presentation goes into a lot of detail about interaction of light with matter from a physics point of view, then builds its way up to the Cook-Torrance specular BRDF model. The diffuse BRDF and the Image Based Lighting were skipped due to time constraints. I am considering doing a Part 2 to address those topics, but I haven’t decided anything yet.

In the mean time, please leave a comment or contact me if you notice any mistake or inaccuracy.

Abstract

How do you implement a Physically Based Shading for your demos yet keep the possibility to try something completely different without having to rewrite everything?
In this talk we will first get an intuitive understanding of what makes matter look the way it looks, with as much detail as we can given the time we have. We will then see how this is modeled by a BRDF (Bidirectional Reflectance Distribution Function) and review some of the available models.
We will also see what makes it challenging for design and for real-time implementation. Finally we will discuss a possible implementation that allows to experiment with different models, can work in a variety of cases, and remains compatible with size coding constraints.

Slides

Here are the slides, together with the text of the talk and the link to the references:
Implementing a Physically Based Shading model without locking yourself in.

Video

And finally here is the recording of the talk, including a quick demonstration of the prototype:

Interference shader

Here is the shader used during the presentation to illustrate light interaction at the interface between to media:

Acknowledgements

Thanks again to Alan Wolfe for reviewing the text, Alkama for the motivation and questions upfront and help in the video department, Scoup and the Revision crew for organizing the seminars, Ronny and Siana for the help in the sound department, and everyone who provided feedback on my previous article on Physically Based Shading.

Addendum

Following the publication of this article, Nathan Reed gave several comments on Twitter:

FWIW – I think the model of refraction by the electromagnetic field causing electrons to oscillate is the better one. This explains not only refraction but reflection as well, and even total internal reflection. Feynman does out the wave calculations: https://feynmanlectures.caltech.edu/II_33.html

It also explains better IMO why a light wave keeps its direction in a material. If an atom absorbs and re-emits the photon there is no reason why it should be going in the same direction as before (conservation of momentum is maintained if the atom recoils). Besides which, the lifetime of an excited atomic state is many orders of magnitude longer than the time needed for a light wave to propagate across the diameter of the atom (even at an IOR-reduced speed).

Moreover, in the comments of the shader above, CG researcher Fabrice Neyret mentioned a presentation of his from 2019, which lists interactions of light with matter: Colors of the universe.
Quoting his summarized comment:

In short: the notion of photons (and their speed) in matter is a macroscopic deceiving representation, since it’s about interference between incident and reactive fields (reemitted by the dipoles, at least for dielectrics).


Long hiatus

Last week I was lucky enough to attend SIGGRAPH 2018, in Vancouver. My colleagues and I were presenting on a booth the work we had done, a VR story with a distinctive comic book look. I was also invited to participate to a panel session on demoscene, where I shared some lessons learned while making the 64k intro H – Immersion. The event brought a certain sense of conclusion to this work, aside from filling me with inspiration and motivation to try new things.

It has been a long time since I last posted anything here. For the last two years the majority of my spare time went into making that 64k intro. In fact the last post, “Intersection of a ray and a cone”, was related to it. I was implementing volumetric lighting for the underwater scenes, and wanted to resolve cones of light with ray tracing, before marching inside those cones. LLB and I have talked about the creation process in two making-of articles: “A dive into the making of Immersion”, and “Texturing in a 64kB intro”.

During that time, a lot of new things have happened in the computer graphics community. It has been difficult to keep track of everything. The last topic I started experimenting with is point cloud and mesh capture from photos; I might expend on it here in the future. I also want to experiment with DIY motion capture. Anyway, it’s time to resume posting here.

Sophie Wilson – The future of microprocessors

In this 2014 talk, one of the designers of the original ARM processor, Sophie Wilson, gives an overview of the history of processors and what to expect in future.

The presentation covers in layman’s terms topics like Moore’s law (obviously), pipelining, parallelism, power consumption, heat dissipation, processor specialization and cost of production among other things. As explained, all those aspects are facing difficult challenges that are likely to shape the future of microprocessors, which in turns impacts both hardware and software engineers.

Here is the same presentation in 2016:

Christopher McKay – Life beyond the Earth

So that’s my job in a sense: search other worlds for alien life.

So when I’m on a long plane flight, like coming over here, and the guy sitting next to me says: “So what do you do?”. Chatty fellow. I say: “Well I search other worlds for alien life.”. And then, he leaves me alone for the rest of the flight, I can get some sleep. It’s a great job description, I like it.

This excerpt is part of the introduction of the following lecture by NASA scientist Dr. Christopher McKay, on the search of life beyond Earth. He talks about Mars exploration, a potential mission to Enceladus, the challenges of field research in such environment, how to detect life (without accidentally destroying it in the attempt), how to avoid contamination and what would be some practical consequences to finding life. It’s a great insight into the current state of the field, delivered with an entertaining tone.

The physics of cloaking

In this seminar, Dr. Greg Gbur presents the current state of research on cloaking devices, the differences between science fiction and what seem to actually be possible, and different applications beyond invisibility, like protection from thermal radiation or earthquakes.

A real-time post-processing crash course

Revision 2015 took place last month, on the Easter weekend as usual. I was lucky enough to attend and experience the great competitions that took place this year; I can’t recommend you enough to check all the good stuff that came out of it.

Like the previous times I shared some insights in a seminar, as an opportunity to practice public talking. Since our post-processing have quite improved with our last demo (Ctrl-Alt-Test : G – Level One), the topic was the implementation of a few post-processing effects in a real-time renderer: glow, lens flare, light streak, motion blur…

Having been fairly busy over the last months though, with work and the organising of Tokyo Demo Fest among others, I couldn’t afford as much time as I wanted to spend on the presentation unfortunately. An hour before the presentation I was still working on the slides, but all in all it went better than expected. I also experimented with doing a live demonstration, hopefully more engaging than some screenshots or even a video capture can be.

Here is the video recording made by the team at Revision (kudos to you guys for the fantastic work this year). I will provide the slides later on, after I properly finish the credits and references part.

Abstract:
Over decades photographers, then filmmakers, have learned to take advantage of optical phenomenons, and perfected the recipe of chemicals used in films, to affect the visual appeal of their images. Transposed to rendering, those lessons can make your image more pleasant to the eye, change its realism, affect its mood, or make it easier to read. In this course we will present different effects that can be implemented in a real-time rendering pipeline, the theory behind them, the implementation details in practice, and how they could fit in your workflow.

GDC 2015 presentations

The Game Developers Conference took place last week in San Francisco. As I am starting to see more speakers publish their slides, I am creating this post to keep track of some them (this list is not meant to be exhaustive).

For a more extensive list, Cédric Guillemet has been garnering links to GDC 2015 papers on his blog.