Draft on depth of field resources

What is mostly in my thoughts recently when it comes to rendering is real time depth of field effect. I intend to read state of the art material on the matter and hopefully post a well formed summary, just like I did for physically based rendering, but until then I thought I would list a few resources already.

That’s all for now. ;-)

Update: after further documentation, both Kawase’s  and DICE’s techniques indeed rely on the idea of creating an hexagon shaped bokeh by decomposing it into three skewed boxes, but while Kawase’s approach uses seven passes, DICE’s one takes it down to two passes thanks to some clever use of multirender targets.

Also, I forgot to mention a second article of Matt Pettineo, where he suggests a combination of techniques to achieve a better result.

Show your difference

An example of actual bokeh in a photo of mine

 

Readings on physically based rendering

Physically based rendering (PBR) seems to be the hot thing recently in game as well as film industries. Last year at SIGGRAPH Naty Hoffman led a course on physically based shading. The first talk in particular gives some excellent insights on the physics behind lighting.

This year, at SIGGRAPH again, the physically based lighting used in Call of Duty: Black Ops was one of the topics of the course Advances in Real-Time Rendering in 3D Graphics and Games. Keith Judge wrote an article to sum up the ideas presented in this talk in shading language. Sébastien Largarde also has some insights on the shift to physically based shading from a production point of view.

On a narrower topic Rory Driscoll briefly explained the problem of energy conservation, a first but important step toward PBR, in a convincing and straight to the point manner. In articles mentioning normalization factors the origin is not always clear, especially when authors take shortcuts to avoid digressing from their topic. Fortunately Fabian Giesen wrote a demonstration of the normalization factor for the Phong and Blinn-Phong models and Chris­t­ian Schüler gathered various of the normalization terms we can see in publications, with proper references.

There are many other sources to read, but I will stop there for now. Just follow the links and you have plenty of reading already. ;)


Addendum: Sébastien pointed out this article on energy conservation for wrapped diffuse lighting and this one on physically plausible microfacet BRDF, which includes a WebGL demo to play with.


Update: Tri-Ace has made a couple of presentations on the matter over the last years, which you can find on their research page.


Update: this article, Basic Theory of Physically-Based Rendering, presents the ideas of PBR in a very easy to read manner and works well as an introduction.